
Exploiting Similarity
Between Variants to Defeat
Malware
“Vilo” Method for Comparing and Searching Binary
Programs

Andrew Walenstein
University of Louisiana at Lafaytte

Blackhat DC 2007

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 2

Outline

 Motivation
Few Families, Many Variants
The Role of Program Binary Comparisons

 Vilo: Program Search Methods
Feature Comparison Approach
Weighting and Search

 Evaluation
Evaluation Design
Performance Evaluation
Accuracy Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 3

Variety: The Spice of ALife

 According to Microsoft’s data [MSIR2006]:
 97,924 variants in first half of 2006

 e.g. 3,320 variants of Win32/Rbot, from 5,706 unique
files

 that’s > 22 per hour

a. Few Families, Many Variants

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 4

Microsoft’s Data [MSIR2006]

Data source:
Microsoft Security Intelligence Report:

Jan – Jun 2006

a. Few Families, Many Variants

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 5

So Few Families, So Many Variants

 Clearly all these are not new, built-from-scratch!
 only a few hundred families typical in 6-month period

[SISTR2006, MSIR2006]

 Variants thus outnumber families by around 500:1
 top 7 families account for > 1 out of 2 variants
 top 25 families account for > 3 out of 4 variants
 good bet:

 any new malicious program is a variant of a previous
one

a. Few Families, Many Variants

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 6

Malware Evolution Drivers

 What is driving this explosion of variety?
 cost of constructing malware
 reduced cycle time for new signature updates

a. Few Families, Many Variants

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 7

Malware Construction Cost Drivers

 Malware can be costly to develop from scratch
 a new family can be a substantial investment in time &

effort
 malware authors wish to protect existing investments

 Their problem: malware detectors catch their code

 Their solution: change the code
 can be minor tweaks to throw off signatures

 cheaper to modify than to build from scratch
 changes could also be bug fixes, updates, feature additions

 i.e. standard software evolution

a. Few Families, Many Variants

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 8

Update Rate Driver

 Malware author problem: rapid signature updates
 now: daily, sometimes even hourly

 Their solution: update frequently
 can expect signature update rate to pace evolution

 i.e.: rate(malware_evolution) ∝ rate(signature_updates)
 mutation rate increasing to match signature update rates

a. Few Families, Many Variants

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 9

Impact of Variation on Malware
Defense
 Adds layer of complication

 defense was bad enough before variant flood
 now malware is a constantly changing target

 Need: systematic ways of coping with variations
 otherwise rapid evolution becomes DOS attack
 i.e. flood the limited pool of anti-malware researchers

b. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 10

Why Does Variation Even Work?

 We know most variants differ only slightly
 shouldn’t this be a significant attack weakness?

 Seems ripe for a counter-attack:
 AV community has plenty of past samples
 often only minor changes are made between variants
 shouldn’t smaller changes = easier detection?

 What is needed:
 methods for comparing programs to previous ones

 i.e. ways of searching for matching programs
 i.e., program similarity measures

b. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 11

Uses for Program Similarity
Measures
 Suppose we had a suitable measure

 it can compare whole program binaries
 it is insensitive to minor tweaks and changes

 What might be done with it?

 Two possibilities:
 automated defenses (?)

 minor tweaks currently slip past automated defenses
 support tools for anti-malware researchers

 high numbers of variants creates burdens on analysts
 they spend greater fraction of time on already-known

threats

b. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 12

Current Analyst Scenario

Analyst needs to:

 Establish malware family
 minimal organization-wide resources to consult
 heavy reliance on past experience, Google

 Find differences affecting signature matching
 ad hoc discovery utilizing manual inspection

 Figure out how to update the signatures
 manual discovery of differences

 Look for familial similarities
 do not want new signature for every variant
 without whole-family comparison, can miss commonalities

b. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 13

Future Analyst Scenario

Scenario from the future:

 New unknown sample arrives

 Closely related samples are retrieved automatically
 analyst need not have seen the family before

 Associated signatures & documentation are recalled
 past efforts are quickly leveraged (organizational

knowledge)

 Analysis of differences highlights changed parts
 allows analyst to quickly focus on how to fix signatures

 Analysis of similarities highlights common features
 helps analyst determine how to create generic signaturesb. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 14

Impact to Analyst Scenario

 Direct impact on anti-malware business
 comparisons help for vast majority of new samples

 is a critical part of infrastructure, workflow
 benefits:

 reduces time to signature release
 improves detection rates
 gives team more time to attend to high priority issues

b. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 15

Future Automated Detection Scenario?

Scenario from the future:

 New sample arrives

 It is compared against a database of known malware

 Too similar to existing malware sample?
 it is filtered
 what valid program is 99% Win32.Bagle?

 System preemptively defends against close family members

b. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 16

OK, But How?

 The question is: how to compare programs binaries?

 Three key comparison issues considered:
Sensitivity of comparison to minor changes

 adding single C instruction can changed all jump targets
 reordering statements or procedures

Dealing with common code
 e.g. common libraries, compiler-inserted code

Simplicity of analysis method
 efficiency is always an issue
 wish to avoid costly analysis like control flow graph extraction

 … Vilo approach to program comparison

b. The Role of Binary Program Comparisons

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 17

Outline

 Motivation
Few Families, Many Variants
The Role of Program Binary Comparisons

 Vilo: Program Search Methods
Feature Comparison Approach
Weighting and Search

 Evaluation
Evaluation Design
Performance Evaluation
Accuracy Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 18

A Program Comparison Approach

 Adaptation of text search and analysis techniques

 Three key ideas underlying the approach:
Base similarity comparison on matching code “features”

 use whole-program comparison, i.e. comprehensive sets
Vector model for comparison

 fast, easy to calculate
Statistical weighting for features

 automatic filtering of “uninteresting” features

 Additional focus: code similarity
 particular focus is when minor changes are made
 then its important to select the right features

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 19

Feature Comparison Approach

 Comparison is based on some set of features

Y
low
Y
4

YNYis black?
mediumhighnoneamount of cushioning

YNNhas a back?
503number of legs

FEATURES

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 20

Feature Comparison Approach

 Comparison of objects means comparison of whole
list of features

 Example
 Differences: one leg, cushioning
 Commonalities: has as back, color

vs

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 21

Feature Approach Tradeoffs

 Advantages
 flexibility: use whatever features make sense
 order insensitivity: ordering is irrelevant

 unless features are order sensitive

 However: must get the features right

 Question: what features to use for programs?

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 22

n-Grams As Features

 n-gram is a sequence of n “characters” in a row
 n is typically 2 or 3
 “characters” can be defined as words, letters, etc.
 characters can be filtered

 Example: 2-grams, lower-cased ASCII text, whitespace
filtered
 for “The cat is in.”

 th he ec ca at ti is si in
 for “Is the cat in?”

 is st th he ec ca at ti in
 difference between two: si / st
 commonalities: at, ca, ec, he, in, is, th, ti

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 23

n-grams As Features: Tradeoffs

 Advantages
 relatively insensitive to order permutation
 simple to extract automatically
 easy to compare for commonalities, differences

 Disadvantages
 number of features can be high
 some sensitivity to ordering

 sensitivity related to size of n
 if n is high, any change can affect many features

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 24

n-grams Applied to Programs

 Many ways of defining and selecting “characters”
 could use raw bytes
 could use extracted strings
 could use disassembly text
 could be a combination of any of the above

 We have used all of these
 they all do certain things well

 Our focus here: applications to code, specifically
 not as well studied
 difficult for malware author to change

 Approach: use abstracted, disassembled program

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 25

n-Grams Using Abstracted
Assembly
 Many ways to encode assembly

 raw assembly could work
 convert directly as in text retrieval

 main problem: sensitivity to change
 inserted instruction changes branch targets
 data changes, register swaps, all can be unimportant

 Approach: use only the operations as characters
 “noise” in the operands do not affect the match
 cannot match on data
 but captures something of the program essence

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 26

n-Grams Encoding of Operations

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp) cltd_push

push_cltd

mov_push

mov_mov

push_mov

tally2-gram
11

1

1

1

1

1

1

1

1

1

1

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 27

Reducing Order Sensitivity: n-
Perms
 n-grams are sequence specific

 n-grams over operation sequences are sensitive to
ordering

 modifications may change the orderings
 e.g. permuting order of non-dependent statements

 Defined n-perms as variants of n-grams
 difference: match does not consider order of characters

 “the” matches “teh” matches “eth”

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 28

n-Perm Encoding of Operations

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp)

push_cltd

mov_mov

push_mov

tally2-perm
11

1

1

1

1

1

1

1

1 1

1

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 29

Differences Between Grams/Perms

 Advantages of n-perms over n-grams
 number of features is reduced (for equivalent n)

 “the” and “teh” are distinct features under n-grams
 reduce sensitivity to order changes

 e.g., code permutations, such as statement reordering

 Disadvantages
 false matches more likely for any given n

 must use larger n to reduce false matches

 n-perms appear to work well on code [PHYLO2005]
 part of a pending patent

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 30

Vector-Based Similarity Calculation

 Each feature is
treated as a
dimension
 programs are

summarized as a
vector of feature counts
 i.e. mapped to points

in a multi-
dimensional space

 e.g.
 = [5 1 2 1]

padding

num_legs

has_back

5

4

3

2

1

0

1

1

2
3

4

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 31

Vector Representation of Assembly

 Frequency counts turned into vector
 [3 1 2]

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp) 2

1

3

push_cltd

mov_mov

push_mov

freq2-perm

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 32

Vectors Comparison

 Vectors compared by measuring their cosine angle
 think: high similarity = arrows pointing in the same

direction
 e.g., v1 = [3 1 2] compared to v2 = [4 0 5]

a. Feature Comparison Approach

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 33

Feature Interestingness

 Not all features are equally interesting
 e.g., standard function epilogs

 occur many times, are in essentially all programs
 e.g., standard linked-in features

 startup and exit code, standard libraries
 such features should not be as important for similarity

 may be interesting to know two viruses use same libraries
 but do not want similarity scores to reflect primarily that

 Needed:
 a way to adjust how important the features are
 and do not wish to manually or statically do this

b. Weighting and Search

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 34

Solution: Statistical Weighting

 Idea comes from text retrieval’s “TF x IDF” scheme
 idea: weight features according to inverse of commonality
 common features = not interesting

 Approach:
 select a corpus or database of malware
 for each feature, count the number of samples it appears in
 weight feature counts by dividing by the feature frequencies

 e.g., if A appears in 10 out of 100, weight A counts by 1/10
 (a variety of formulas can be used too)

b. Weighting and Search

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 35

Weighting Example

 Given two vectors for worms from a database of 10
 worm1: [3 4 2 1]
 worm2: [4 5 1 0]
 cosine similarity: sim(worm1,worm2) = .958

 Weighting the feature count vectors
 feature counts: [9 8 3 2]

 i.e., feature 1 is in 9 out of 10 samples
 weighted1: [3/9 4/8 2/3 1/2] = [.33 .25 .66 .50]
 weighted2: [4/9 5/8 1/3 0/2] = [.44 .63 .33 .00]
 cosine similarity: sim(weighted1, weighted2) = .795

 First two features are very common
 weighted versions decrease their relative importance

b. Weighting and Search

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 36

Advantages of Weighting Scheme

 The scheme automatically scales common code
 e.g., when same compiler used by multiple worms

 Weights can be automatically adjusted
 can be incrementally calculated when adding new samples

 Can pre-weight the database
 import standard library code as samples
 initialize their feature counts with high values

 serves to de-emphasize known irrelevant features
 can be used to remove problem false matches

b. Weighting and Search

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 37

Searching

 With similarity function, one can search a database
collect together some known malware
load the database with feature count vectors from these
extract feature count vector from unknown program U
for every vector in database

calculate weighted cosine similarity to U
sort list of similarities

 Result: ranked list of matches

b. Weighting and Search

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 38

Summary of Approach

 Simplicity
 automatic way of extracting features
 easy arithmetic for vector scaling and comparison
 needs disassembly, but nothing else
 compare: using control-flow-graphs or semantic graphs

 Insensitivity to program modifications
 by design, is Insensitive to sequence

 e.g. code motion and permutations
 permutation affects only handful of features
 particularly when using n-perms

 compare: sequence-based approaches
 e.g. longest common subsequence sensitive to block

moves

b. Weighting and Search

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 39

Summary of Approach

 Ability to filter “uninteresting” features
 automatic, based on corpus of samples
 allows specific filtering without manually tuning features

 Flexibility
 mix-and-match feature types

 n-grams/perms, strings, bytes, etc.

b. Weighting and Search

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 40

Outline

 Motivation
Few Families, Many Variants
The Role of Program Binary Comparisons

 Vilo: Program Search Methods
Feature Comparison Approach
Weighting and Search

 Evaluation
Evaluation Design
Performance Evaluation
Accuracy Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 41

How Well Does the Approach
Work?
 Dimensions to evaluate

Does the search scale?
 Can we search against useful sized databases?

 Is accuracy good?
 Will it catch minor variants?
 How frequently will false positives occur?

 Two studies conducted to shed light on these

a. Evaluation Design

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 42

Apparatus

 Implementation of Vilo approach
 core search implemented in C

 reads database of feature count vectors
 queries are other feature count vectors
 returns ranked list of matches

 Implemented as an independent component
 component part of “search-as-a-service” environment
 runs as daemon under Linux
 prototype web-based portal under development

a. Evaluation Design

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 43

Implementation Specifics

 For building a database:
 disassembly currently using objdump (GNU binutils)

 but have used IDA Pro™, but with some limitations
 n.b., the programs must not be encrypted or packed

 10-perms used for our tests

 For querying:
 feature count vector extracted same way
 vector is sent to server, and results are read

 Interfaces:
 server components and command line tools
 JSP-based wrapper / interface

a. Evaluation Design

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 44

Matching

a. Evaluation Design

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 45

Comparing PE Information

a. Evaluation Design

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 46

Comparing Strings

a. Evaluation Design

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 47

Comparing Disassembly

a. Evaluation Design

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 48

Basic Performance Evaluation

 Query time is a critical performance issue
 must be able to query against large enough database
 should be interactive even when many samples involved

 Evaluation method:
load database with sample sets of different sizes
average times fo 200 randomly selected samples
measure time and memory usage

 query time only
 not transmission and parsing overheads

b. Performance Evaluation

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 49

Subject / Data Set

 Data was generated
 did not have access to thousands of authentic variants

 Group properties of the dataset are important
 query speed affected by sample sizes
 memory use is affected by

 number of families
 evolution rate between variants

b. Performance Evaluation

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 50

Data Set Construction /
Properties
 Projected from collection of authentic samples

 542 samples collected from mail server and web
 primarily worms and Trojans (Win32)

 Projection method
 size of created samples projected from authentic

distribution
 1 out of 2 are modified versions of another
 evolution rate between versions is half a % difference

 in practice, authentic variants are often much less different

b. Performance Evaluation

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 51

Results: Memory & CPU Usage

b. Performance Evaluation

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 52

Accuracy Test Design

 Two error classes:
 false negative: a good match was not reported
 false positive: a match reported is not a good match
 “good” match: known to be related or close in some way

 Evaluation method:
 load database with samples

 simulating typical menagerie of malice
 derivation relationships known between samples

 two query sessions using similarity threshold of .100 and
.002
 nothing returned less than these thresholds

 measures:
 precision and recall c. Accuracy Evaluation

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 53

Data Set Construction

 Data set is generated
 264 samples of Win32 malware selected from first

 all are from top-25 families in 2006, as named by Microsoft
[MSIR2006]

 36 of these identified as family constructed using
construction kit

 202 variants constructed using construction kit in forensic
environment
 known to be derivatives by construction
 related to the 36 collected from the wild

 466 samples total

c. Accuracy Evaluation

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 54

Results and Discussion

 Limited test due to limitations of database

 Optimum threshold for data set is at .100
 no point increasing threshold, since:

 no fewer false positives (precision is 100%)
 only fewer matches (recall drops)

 still a small number

1.001.00.100

1.000.79.002

Mean RecallMean PrecisionThreshold

c. Accuracy Evaluation

Motivation Search Methods Evaluation

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 55

Conclusions

 Assembly-based vector matching is promising
 simple and automatic
 scalable to databases of 10s of thousands

 at least efficient for interactive matching, such as in triage
 designed to account for expected variation

 via selection of whole-program feature matching
 due to selection of feature types

 good preliminary results
 may be suitable for automated detection

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 56

References

Symantic, Internet Security Threat Report Volume X:
September 2006.
http://www.symantec.com/enterprise/threatreport/index.jsp

SISTR2006

Karim, Md.-E., Walenstein, A., Lakhotia, A., and Parida,
L., Malware Phylogeny Generation Using
Permutations of Code, Journal in Computer Virology,
1(1), 2005, pp. 13-23.
http://www.springerlink.com/content/u573334818560381

PHYLO200
5

Microsoft. Microsoft Security Intelligence Report: Jan
– Jun 2006.
http://www.microsoft.com/downloads/details.aspx?FamilyId=1C443104-
5B3F-4C3A-868E-36A553FE2A02

MSIR2006

04/01/2007 | Blackhat DC |
Walenstein Exploiting Similarity
Between Variants 57

Acknowledgements

Current Members of the
Software Reasearch
Laboratory
 Arun Lakhotia, Director
 Michael Venable, Research

Associate
 Ph.D. Students

 Mohamed R. Chouchane
 Md.-Enam Karim

 M.Sc. Students
 Matthew Hayes
 Chris Thompson

Recent Graduates
 Aditya Kapoor, McAfee
 Eric Uday Kumar, Authentium
 Rachit Mathur, McAfee

