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Variety: The Spice of AlLife

According to Microsoft's data [MSIR2006]:
97,924 variants in first half of 2006
e.g. 3,320 variants of Win32/Rbot, from 5,706 unique
files
that's > 22 per hour
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Microsoft’s Data [MSIR2000]

[ ]Win32/R$bot

[ JWin32/Banker

[ ]Win32/Hupigon
[ ]Win32/Sdbot

[ ]Win32/Small
[]Win32/Bancos

[ Win32/Agent

B Remaining Top 25
B Rest

Data source:
Microsoft Security Intelligence Report:
Jan — Jun 2006
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So Few Families, So Many Variants

Clearly all these are not new, built-from-scratch!

only a few hundred families typical in 6-month period
[SISTR2006, MSIR2006]

Variants thus outnumber families by around 500:1

top 7 families account for > 1 out of 2 variants
top 25 families account for > 3 out of 4 variants
good bet:

any new malicious program is a variant of a previous
one
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Malware Evolution Drivers

What is driving this explosion of variety?

cost of constructing malware
reduced cycle time for new signature updates
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Malware Construction Cost Drivers

Malware can be costly to develop from scratch

a new family can be a substantial investment in time &
effort

malware authors wish to protect existing investments

Their problem: malware detectors catch their code

Their solution: change the code
can be minor tweaks to throw off signatures

cheaper to modify than to build from scratch
changes could also be bug fixes, updates, feature additions

oasorM !ipgékgga)@qard software evolution
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Update Rate Driver

Malware author problem: rapid signature updates
now: daily, sometimes even hourly

Their solution: update frequently
can expect signature update rate to pace evolution
l.e.: rate(malware evolution) o« rate(signature updates)

mutation rate increasing to match signature update rates
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Impact of Variation on Malware

Defense
Adds layer of complication

defense was bad enough before variant flood
now malware is a constantly changing target

Need: systematic ways of coping with variations

otherwise rapid evolution becomes DOS attack
l.e. flood the limited pool of anti-malware researchers
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Why Does Variation Even Work?

We know most variants differ only slightly
shouldn’t this be a significant attack weakness?

Seems ripe for a counter-attack:

AV community has plenty of past samples
often only minor changes are made between variants
shouldn’t smaller changes = easier detection?

What is needed:

methods for comparing programs to previous ones
I.e. ways of searching for matching programs
l.e., program similarity measures
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Uses for Program Similarity

Measures _
Suppose we had a suitable measure

It can compare whole program binaries
it is insensitive to minor tweaks and changes

What might be done with it?

Two possibillities:
automated defenses (?)

minor tweaks currently slip past automated defenses
support tools for anti-malware researchers

high numbers of variants creates burdens on analysts

they spend greater fraction of time on already-known
IGELS
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Current Analyst Scenario

Analyst needs to:

Establish malware family

minimal organization-wide resources to consult
heavy reliance on past experience, Google

Find differences affecting signature matching
ad hoc discovery utilizing manual inspection

Figure out how to update the signatures
manual discovery of differences

Look for familial similarities

do not want new signature for every variant
) 4/01I/m}y{yq%g’gg\gvn;o!le-famlly comparison, can miss commonalities

Walenstein ~ Exploiting Similarity Motivation Search Methods Evaluation

Between Variants b. The Role of Binary Program Comparisons -




Future Analyst Scenario

Scenario from the future:
New unknown sample arrives

Closely related samples are retrieved automatically
analyst need not have seen the family before

Associated signatures & documentation are recalled

past efforts are quickly leveraged (organizational
knowledge)

Analysis of differences highlights changed parts
allows analyst to quickly focus on how to fix signatures

cofkmalysig-of-similarities hinhlinhts common features
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Impact to Analyst Scenario

Direct impact on anti-malware business
comparisons help for vast majority of new samples
is a critical part of infrastructure, workflow
benefits:
reduces time to signature release
Improves detection rates
gives team more time to attend to high priority issues
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Future Automated Detection Scenario?

Scenario from the future:
New sample arrives
It is compared against a database of known malware

Too similar to existing malware sample?

it is filtered
what valid program is 99% Win32.Bagle?

System preemptively defends against close family members
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OK, But How?

The question is: how to compare programs binaries?

Three key comparison issues considered:
Sensitivity of comparison to minor changes
adding single C instruction can changed all jump targets

reordering statements or procedures
Dealing with common code
e.g. common libraries, compiler-inserted code
Simplicity of analysis method
efficiency is always an issue
wish to avoid costly analysis like control flow graph extraction

foo1000: YO, @RProach to program comparison
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A Program Comparison Approach

Adaptation of text search and analysis techniques

Three key ideas underlying the approach:
Base similarity comparison on matching code “features”
use whole-program comparison, i.e. comprehensive sets
Vector model for comparison
fast, easy to calculate
Statistical weighting for features
automatic filtering of “uninteresting” features

Additional focus: code similarity

particular focus is when minor changes are made
o 4/Oﬁ,/?m;r]lqui]](:ij;jsmiqugplportant to select the right features
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Feature Comparison Approach

Comparison is based on some set of features

FEATURES

number of legs

has a back?
amount of cushioning plfe]g medium
is black? N Y
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Feature Comparison Approach

Comparison of objects means comparison of whole
list of features

Example
Differences: one leg, cushioning
Commonalities: has as back, color
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Feature Approach Tradeoffs

Advantages

flexibility: use whatever features make sense
order insensitivity: ordering is irrelevant

unless features are order sensitive

However: must get the features right

Question: what features to use for programs?
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1n-Grams As Features

n-gram is a sequence of n “characters” in a row

nis typically 2 or 3
“characters” can be defined as words, letters, etc.
characters can be filtered

Example: 2-grams, lower-cased ASCII text, whitespace
filtered

for “The catis in.”

th he ec ca at ti is si In
for “Is the cat in?”

is st th he ec ca at ti in
difference between two: si/ st
os/oLogoimonalities: at, ca, ec, he, in ie th #
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n-grams As Features: Tradeoffs

Advantages
relatively insensitive to order permutation
simple to extract automatically
easy to compare for commonalities, differences

Disadvantages
number of features can be high
some sensitivity to ordering
sensitivity related to size of n
if n is high, any change can affect many features
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n-grams Applied to Programs

Many ways of defining and selecting “characters”
could use raw bytes
could use extracted strings
could use disassembly text
could be a combination of any of the above

We have used all of these
they all do certain things well

Our focus here: applications to code, specifically

not as well studied
difficult for malware author to change

Approach: use abstracted, disassembled program
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n-Grams Using Abstracted
Assembly

Many ways to encode assembly

raw assembly could work
convert directly as in text retrieval
main problem: sensitivity to change
Inserted instruction changes branch targets
data changes, register swaps, all can be unimportant

Approach: use only the operations as characters

“noise” in the operands do not affect the match
cannot match on data
but captures something of the program essence
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n-Grams Encoding of Operations

55

b8 11 00 00 00

89 e5

57

99

56

c/ 45e4 11 00 00 00
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Reducing Order Sensitivity: 7-

Perms -
Nn-grams are sequence SpeCIfIC

n-grams over operation sequences are sensitive to
ordering
modifications may change the orderings

e.g. permuting order of non-dependent statements

Defined n-perms as variants of n-grams
difference: match does not consider order of characters
“the” matches “teh” matches “eth”
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n-Perm Encoding of Operations

55 ebp

b8 11 00 00 00 $0x11,eax push mov 111
89 e5 esp,ebp
57 edi

99 push_cltd 1 1
56 esi

c/45e4 110000 00 $0x11,0xffed(ebp)

mov_mov 1
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Differences Between Grams/Perms

Advantages of n-perms over n-grams
number of features is reduced (for equivalent n)

“‘the” and “teh” are distinct features under n-grams
reduce sensitivity to order changes

e.g., code permutations, such as statement reordering

Disadvantages
false matches more likely for any given n
must use larger n to reduce false matches

n-perms appear to work well on code [PHYLO2005]
part of a pending patent
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Vector-Based Similarity Calculation

num_legs
Each feature is
treated as a
dimension

programs are
summarized as a
vector of feature counts

l.e. mapped to points

3

Y=15121]

has_back
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Vector Representation of Assembly

99 ebp

b8 11 00 00 00 $0x11,eax
89 e5 esp,ebp
57 edi

99 mov_mov
56 esi

c7 45e4 1100 00 00 $0x11,0xffed(ebp)

push_mov

push_cltd

Frequency counts turned into vector
[312]
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Vectors Comparison

Vectors compared by measuring their cosine angle

think: high similarity = arrows pointing in the same
direction
e N v —II21 291 ~r~amnarad tAn v — T A N K1

Vievo 3x44+1x0+2x%x5 0918

vy [va] V32112422 /42 1 02 + 52
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Feature Interestingness

Not all features are equally interesting
e.g., standard function epilogs

occur many times, are in essentially all programs
e.g., standard linked-in features

startup and exit code, standard libraries
such features should not be as important for similarity

may be interesting to know two viruses use same libraries
but do not want similarity scores to reflect primarily that

Needed:

a way to adjust how important the features are
and do not wish to manually or statically do this
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Solution: Statistical Weighting

ldea comes from text retrieval’'s “TF x IDF” scheme

idea: weight features according to inverse of commonality
common features = not interesting

Approach:
select a corpus or database of malware
for each feature, count the number of samples it appears in
weight feature counts by dividing by the feature frequencies
e.g., if A appears in 10 out of 100, weight A counts by 1/10
(a variety of formulas can be used too)
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Weighting Example

Given two vectors for worms from a database of 10
worm,:[34 2 1]
worm,.[4510]
cosine similarity: sim(worm,,worm.,) = .958

Weighting the feature count vectors
feature counts: [983 2]

l.e., feature 1 is in 9 out of 10 samples
weighted,: [ 3/9 4/8 2/3 1/2] =[ .33 .25 .66 .50 ]
weighted,: [ 4/9 5/8 1/30/2] =[ .44 .63 .33 .00 ]
cosine similarity: sim(weighted1, weighted2) = .795

First two features are very common
weighted versions decrease their relative importance
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Advantages of Weighting Scheme

The scheme automatically scales common code
e.g., when same compiler used by multiple worms

Weights can be automatically adjusted
can be incrementally calculated when adding new samples

Can pre-weight the database
Import standard library code as samples
initialize their feature counts with high values
serves to de-emphasize known irrelevant features
can be used to remove problem false matches
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Searching

With similarity function, one can search a database
collect together some known malware
load the database with feature count vectors from these
extract feature count vector from unknown program U
for every vector in database
calculate weighted cosine similarity to U
sort list of similarities

Result: ranked list of matches
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Summary of Approach

Simplicity
automatic way of extracting features
easy arithmetic for vector scaling and comparison
needs disassembly, but nothing else
compare: using control-flow-graphs or semantic graphs

Insensitivity to program modifications

by design, is Insensitive to sequence
e.g. code motion and permutations
permutation affects only handful of features
particularly when using n-perms
compare: sequence-based approaches

e.g. longest common subsequence sensitive to block

mMoves
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Summary of Approach

Ability to filter “uninteresting” features

automatic, based on corpus of samples
allows specific filtering without manually tuning features

Flexibility
mix-and-match feature types
n-grams/perms, strings, bytes, etc.
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How Well Does the Approach
Work?

Dimensions to evaluate
Does the search scale?
Can we search against useful sized databases?
|s accuracy good?
Will it catch minor variants?
How frequently will false positives occur?

Two studies conducted to shed light on these
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Apparatus

Implementation of Vilo approach
core search implemented in C
reads database of feature count vectors
queries are other feature count vectors
returns ranked list of matches

Implemented as an independent component

component part of “search-as-a-service” environment
runs as daemon under Linux
prototype web-based portal under development
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Implementation Specifics

For building a database:
disassembly currently using objdump (GNU binutils)
but have used IDA Pro™, but with some limitations

n.b., the programs must not be encrypted or packed
10-perms used for our tests

For querying:
feature count vector extracted same way
vector is sent to server, and results are read

Interfaces:
server components and command line tools

04,/01,/?0?7J7S|la%ﬁpk§§t%g wrapper / interface
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Matching

Samples matching the uploaded file

Name | worm-Klez-H-090390.001
Size |90,390

Matched Sample Info

samgle/Klez—H
ClamAV: ‘Worm.Klez.H md5: 74e3el72{e55el10b36078c481b514a2d
BitDefender: 'Win32 Klez.H@mm compare: PE strings asm

Warm Klez H-I-Worm Klez i

ClamAV: ‘Worm.Klez.H md5: 543c358d51a949d6584£568bc3acd6Shb
BitDefender: 'Win32 Klezl@mm compare: PE strings asm

20050307-Worm-Klez-H-20050207-162358- bat

ClamAV: ‘Worm.KlezH md5: 105958b332da020bb7f60eaabf2faf2s
BitDefender: in32 KlezH@mm compare: PE strings asm
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Comparing PE Information

Uploaded File Matched File

Identity Identity

Name | worm-Klez-H-090390.001 Name | Worm. Klez E-Worm Win32.Klez.b.h
Ident | Worm. Klez.H Ident | Worm.Klez.E-1
Size 90,390 Size | 61,440

Start | Length RO | Type | Entropy

KERNEL32.dll KERNEL32.dlI
ADVAPI32.dIl ADVAPI32.dII
WS2_32.dll WS2_32.dll
MPR.dII MPR.dII
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Comparing Strings

String Comparison

Strings in Uploaded file "worm-Klez-H-090390.001" only

Strings only in uploaded:
"worm-Klez-H-090390.001"

Mot including dups: | 3

Dups included: 10

2

S 1=
01606
81606

Strings in Matched file "sample/Klez-H" only

Strings only in matched:
"sample/Klez-H"

Mot including dups: | 204

Dups included: 507

Strings Common to Both

Mot including dups: | 271

Dups included: 1116

(click on HELP for an explanation
of this page)
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Comparing Disassembly

33 ££f 3d $0x3d,0xffffffff(%ebx,ft 401174: $0x)1,0xE£EEEEFEL (Sebp) A
ec Oxffffffec(%ebp),%esi — 401178: 0x40117f =
03 $0x3,%es1i 40117a: $0x3d,0x£EEEEFEF (Sebx,
f0o $0x3,0xEELEEEE0 (3ebp) 40117f: Oxffffffec(%ebp),%esi
ec %esi,OxfEffffec (%ebp) 401182: §0x3,%es1
fe 0x401019 401185: $0xX3,0x£EEEEEF0 (Sebp)
zedi 401189: %esi,Oxffffffec(%ebp)
%ebx, %eax 40118c: 0x401019
%esi 401191: 3edi
%ebx 401192: %ebx, %eax
401194: %esi
401195: %Sebx
sebp 401196:
%esp, sebp 401197:
01 00 00 §0x110,%esp a01198: sebp
00 $0x0,0xEEEEEEES (Sebp) 401199: esp, ebp
OxEffffffci%ebp) ,%eax 40119h: §0xlc,%esp
seax 40119e: sebx
§0x4 40119f: sesi
$0x410252 4011a0: 0x10(%ebp)

0x40347e Oxc(%ebp) ,%esi
%ecx e
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Basic Performance Evaluation

Query time is a critical performance issue

must be able to query against large enough database
should be interactive even when many samples involved

Evaluation method:
load database with sample sets of different sizes
average times fo 200 randomly selected samples
measure time and memory usage
query time only
not transmission and parsing overheads
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Subject / Data Set

Data was generated
did not have access to thousands of authentic variants

Group properties of the dataset are important
query speed affected by sample sizes
memory use is affected by
number of families
evolution rate between variants
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Data Set Construction /

PEPOB&&%%% collection of authentic samples

542 samples collected from mail server and web
primarily worms and Trojans (Win32)

Projection method

size of created samples projected from authentic
distribution

1 out of 2 are modified versions of another

evolution rate between versions is half a % difference
in practice, authentic variants are often much less different
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Results: Memory & CPU Usage

B Avg Query Time
(miliseconds)

> Memory Usage (MB) [

o
o
o
o
Database Size
04/01 /2007 S
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Accuracy Test Design

Two error classes:

false negative: a good match was not reported
false positive: a match reported is not a good match
“‘good” match: known to be related or close in some way

Evaluation method:

load database with samples
simulating typical menagerie of malice
derivation relationships known between samples

two query sessions using similarity threshold of .100 and

.002
nothing returned less than these thresholds

04020 BIsUre S |
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Data Set Construction

Data set is generated
264 samples of Win32 malware selected from first

all are from top-25 families in 2006, as named by Microsoft
[MSIR20006]

36 of these identified as family constructed using
construction kit

202 variants constructed using construction kit in forensic
environment
known to be derivatives by construction

related to the 36 collected from the wild
466 samples total
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Results and Discussion

Threshold Mean Precision Mean Recall
.002 0.79 1.00

100 1.00 1.00

Limited test due to limitations of database

Optimum threshold for data set is at .100
no point increasing threshold, since:
no fewer false positives (precision is 100%)

only fewer matches (recall drops)
still a small number
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Conclusions

Assembly-based vector matching is promising
simple and automatic
scalable to databases of 10s of thousands
at least efficient for interactive matching, such as in triage
designed to account for expected variation
via selection of whole-program feature matching
due to selection of feature types
good preliminary results
may be suitable for automated detection
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