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Variety:  The Spice of ALife

 According to Microsoft’s data [MSIR2006]:
 97,924 variants in first half of 2006

 e.g. 3,320 variants of Win32/Rbot, from 5,706 unique
files

 that’s > 22 per hour

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Microsoft’s Data [MSIR2006]

Data source:
Microsoft Security Intelligence Report:

Jan – Jun 2006

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation



04/01/2007 | Blackhat DC |
Walenstein     Exploiting Similarity
Between Variants 5

So Few Families, So Many Variants

 Clearly all these are not new, built-from-scratch!
 only a few hundred families typical in 6-month period

[SISTR2006, MSIR2006]

 Variants thus outnumber families by around 500:1
 top  7 families account for > 1 out of 2 variants
 top 25 families account for > 3 out of 4 variants
 good bet:

 any new malicious program is a variant of a previous
one

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Malware Evolution Drivers

 What is driving this explosion of variety?
 cost of constructing malware
 reduced cycle time for new signature updates

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Malware Construction Cost Drivers

 Malware can be costly to develop from scratch
 a new family can be a substantial investment in time &

effort
 malware authors wish to protect existing investments

 Their problem:  malware detectors catch their code

 Their solution:  change the code
 can be minor tweaks to throw off signatures

 cheaper to modify than to build from scratch
 changes could also be bug fixes, updates, feature additions

 i.e. standard software evolution

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Update Rate Driver

 Malware author problem:  rapid signature updates
 now:  daily, sometimes even hourly

 Their solution:  update frequently
 can expect signature update rate to pace evolution

 i.e.: rate(malware_evolution) ∝  rate(signature_updates)
 mutation rate increasing to match signature update rates

a. Few Families, Many Variants

Motivation   Search Methods   Evaluation
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Impact of Variation on Malware
Defense
 Adds layer of complication

 defense was bad enough before variant flood
 now malware is a constantly changing target

 Need:  systematic ways of coping with variations
 otherwise rapid evolution becomes DOS attack
 i.e. flood the limited pool of anti-malware researchers

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Why Does Variation Even Work?

 We know most variants differ only slightly
 shouldn’t this be a significant attack weakness?

 Seems ripe for a counter-attack:
 AV community has plenty of past samples
 often only minor changes are made between variants
 shouldn’t smaller changes = easier detection?

 What is needed:
 methods for comparing programs to previous ones

 i.e. ways of searching for matching programs
 i.e., program similarity measures

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Uses for Program Similarity
Measures
 Suppose we had a suitable measure

 it can compare whole program binaries
 it is insensitive to minor tweaks and changes

 What might be done with it?

 Two possibilities:
 automated defenses (?)

 minor tweaks currently slip past automated defenses
 support tools for anti-malware researchers

 high numbers of variants creates burdens on analysts
 they spend greater fraction of time on already-known

threats

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Current Analyst Scenario

Analyst needs to:

 Establish malware family
 minimal organization-wide resources to consult
 heavy reliance on past experience, Google

 Find differences affecting signature matching
 ad hoc discovery utilizing manual inspection

 Figure out how to update the signatures
 manual discovery of differences

 Look for familial similarities
 do not want new signature for every variant
 without whole-family comparison, can miss commonalities

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Future Analyst Scenario

Scenario from the future:

 New unknown sample arrives

 Closely related samples are retrieved automatically
 analyst need not have seen the family before

 Associated signatures & documentation are recalled
 past efforts are quickly leveraged (organizational

knowledge)

 Analysis of differences highlights changed parts
 allows analyst to quickly focus on how to fix signatures

 Analysis of similarities highlights common features
 helps analyst determine how to create generic signaturesb. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Impact to Analyst Scenario

 Direct impact on anti-malware business
 comparisons help for vast majority of new samples

 is a critical part of infrastructure, workflow
 benefits:

 reduces time to signature release
 improves detection rates
 gives team more time to attend to high priority issues

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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Future Automated Detection Scenario?

Scenario from the future:

 New sample arrives

 It is compared against a database of known malware

 Too similar to existing malware sample?
 it is filtered
 what valid program is 99% Win32.Bagle?

 System preemptively defends against close family members

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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OK, But How?

 The question is: how to compare programs binaries?

 Three key comparison issues considered:
Sensitivity of comparison to minor changes

 adding single C instruction can changed all jump targets
 reordering statements or procedures

Dealing with common code
 e.g. common libraries, compiler-inserted code

Simplicity of analysis method
 efficiency is always an issue
 wish to avoid costly analysis like control flow graph extraction

 … Vilo approach to program comparison

b. The Role of Binary Program Comparisons

Motivation   Search Methods   Evaluation
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A Program Comparison Approach

 Adaptation of text search and analysis techniques

 Three key ideas underlying the approach:
Base similarity comparison on matching code “features”

 use whole-program comparison, i.e. comprehensive sets
Vector model for comparison

 fast, easy to calculate
Statistical weighting for features

 automatic filtering of “uninteresting” features

 Additional focus:  code similarity
 particular focus is when minor changes are made
 then its important to select the right features

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Feature Comparison Approach

 Comparison is based on some set of features

Y
low
Y
4

YNYis black?
mediumhighnoneamount of cushioning

YNNhas a back?
503number of legs

FEATURES

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Feature Comparison Approach

 Comparison of objects means comparison of whole
list of features

 Example
 Differences:  one leg, cushioning
 Commonalities:  has as back, color

vs

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Feature Approach Tradeoffs

 Advantages
 flexibility:  use whatever features make sense
 order insensitivity:  ordering is irrelevant

 unless features are order sensitive

 However:  must get the features right

 Question:  what features to use for programs?

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Grams As Features

 n-gram is a sequence of n “characters” in a row
 n is typically 2 or 3
 “characters” can be defined as words, letters, etc.
 characters can be filtered

 Example: 2-grams, lower-cased ASCII text, whitespace
filtered
 for “The cat is in.”

 th  he  ec  ca  at  ti  is  si  in
 for “Is the cat in?”

 is  st  th  he  ec  ca  at  ti  in
 difference between two:  si / st
 commonalities:  at, ca, ec, he, in, is, th, ti

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-grams As Features: Tradeoffs

 Advantages
 relatively insensitive to order permutation
 simple to extract automatically
 easy to compare for commonalities, differences

 Disadvantages
 number of features can be high
 some sensitivity to ordering

 sensitivity related to size of n
 if n is high, any change can affect many features

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-grams Applied to Programs

 Many ways of defining and selecting “characters”
 could use raw bytes
 could use extracted strings
 could use disassembly text
 could be a combination of any of the above

 We have used all of these
 they all do certain things well

 Our focus here:  applications to code, specifically
 not as well studied
 difficult for malware author to change

 Approach:  use abstracted, disassembled program

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Grams Using Abstracted
Assembly
 Many ways to encode assembly

 raw assembly could work
 convert directly as in text retrieval

 main problem:  sensitivity to change
 inserted instruction changes branch targets
 data changes, register swaps, all can be unimportant

 Approach: use only the operations as characters
 “noise” in the operands do not affect the match
 cannot match on data
 but captures something of the program essence

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Grams Encoding of Operations

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp) cltd_push

push_cltd

mov_push

mov_mov

push_mov

tally2-gram
11

1

1

1

1

1

1

1

1

1

1

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Reducing Order Sensitivity: n-
Perms
 n-grams are sequence specific

 n-grams over operation sequences are sensitive to
ordering

 modifications may change the orderings
 e.g. permuting order of non-dependent statements

 Defined n-perms as variants of n-grams
 difference:  match does not consider order of characters

 “the” matches “teh” matches “eth”

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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n-Perm Encoding of Operations

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp)

push_cltd

mov_mov

push_mov

tally2-perm
11

1

1

1

1

1

1

1

1 1

1

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Differences Between Grams/Perms

 Advantages of n-perms over n-grams
 number of features is reduced (for equivalent n)

 “the” and “teh” are distinct features under n-grams
 reduce sensitivity to order changes

 e.g., code permutations, such as statement reordering

 Disadvantages
 false matches more likely for any given n

 must use larger n to reduce false matches

 n-perms appear to work well on code [PHYLO2005]
 part of a pending patent

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Vector-Based Similarity Calculation

 Each feature is
treated as a
dimension
 programs are

summarized as a
vector of feature counts
 i.e. mapped to points

in a multi-
dimensional space

 e.g.
                       = [ 5 1 2 1 ]

padding

num_legs

has_back

5

4

3

2

1

0

1

1

2
3

4

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Vector Representation of Assembly

 Frequency counts turned into vector
 [ 3 1 2 ]

55 push ebp
b8 11 00 00 00 mov $0x11,eax
89 e5 mov esp,ebp
57 push edi
99 cltd
56 push esi
c7 45 e4 11 00 00 00 mov $0x11,0xffe4(ebp) 2

1

3

push_cltd

mov_mov

push_mov

freq2-perm

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Vectors Comparison

 Vectors compared by measuring their cosine angle
 think:  high similarity = arrows pointing in the same

direction
 e.g., v1 = [ 3 1 2 ] compared to v2 = [ 4 0 5 ]

a. Feature Comparison Approach

Motivation   Search Methods   Evaluation
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Feature Interestingness

 Not all features are equally interesting
 e.g., standard function epilogs

 occur many times, are in essentially all programs
 e.g., standard linked-in features

 startup and exit code, standard libraries
 such features should not be as important for similarity

 may be interesting to know two viruses use same libraries
 but do not want similarity scores to reflect primarily that

 Needed:
 a way to adjust how important the features are
 and do not wish to manually or statically do this

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Solution:  Statistical Weighting

 Idea comes from text retrieval’s “TF x IDF” scheme
 idea:  weight features according to inverse of commonality
 common features = not interesting

 Approach:
 select a corpus or database of malware
 for each feature, count the number of samples it appears in
 weight feature counts by dividing by the feature frequencies

 e.g., if A appears in 10 out of 100, weight A counts by 1/10
 (a variety of formulas can be used too)

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Weighting Example

 Given two vectors for worms from a database of 10
 worm1: [ 3 4 2 1 ]
 worm2: [ 4 5 1 0 ]
 cosine similarity:  sim(worm1,worm2) = .958

 Weighting the feature count vectors
 feature counts:  [ 9 8 3 2 ]

 i.e., feature 1 is in 9 out of 10 samples
 weighted1: [ 3/9 4/8 2/3 1/2 ] = [ .33 .25 .66 .50 ]
 weighted2: [ 4/9 5/8 1/3 0/2 ] = [ .44 .63 .33 .00 ]
 cosine similarity:  sim(weighted1, weighted2) = .795

 First two features are very common
 weighted versions decrease their relative importance

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Advantages of Weighting Scheme

 The scheme automatically scales common code
 e.g., when same compiler used by multiple worms

 Weights can be automatically adjusted
 can be incrementally calculated when adding new samples

 Can pre-weight the database
 import standard library code as samples
 initialize their feature counts with high values

 serves to de-emphasize known irrelevant features
 can be used to remove problem false matches

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Searching

 With similarity function, one can search a database
collect together some known malware
load the database with feature count vectors from these
extract feature count vector from unknown program U
for every vector in database

calculate weighted cosine similarity to U
sort list of similarities

 Result:  ranked list of matches

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Summary of Approach

 Simplicity
 automatic way of extracting features
 easy arithmetic for vector scaling and comparison
 needs disassembly, but nothing else
 compare:  using control-flow-graphs or semantic graphs

 Insensitivity to program modifications
 by design, is Insensitive to sequence

 e.g. code motion and permutations
 permutation affects only handful of features
 particularly when using n-perms

 compare:  sequence-based approaches
 e.g. longest common subsequence sensitive to block

moves

b. Weighting and Search

Motivation   Search Methods   Evaluation
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Summary of Approach

 Ability to filter “uninteresting” features
 automatic, based on corpus of samples
 allows specific filtering without manually tuning features

 Flexibility
 mix-and-match feature types

 n-grams/perms, strings, bytes, etc.

b. Weighting and Search

Motivation   Search Methods   Evaluation
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How Well Does the Approach
Work?
 Dimensions to evaluate

Does the search scale?
 Can we search against useful sized databases?

 Is accuracy good?
 Will it catch minor variants?
 How frequently will false positives occur?

 Two studies conducted to shed light on these

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Apparatus

 Implementation of Vilo approach
 core search implemented in C

 reads database of feature count vectors
 queries are other feature count vectors
 returns ranked list of matches

 Implemented as an independent component
 component part of “search-as-a-service” environment
 runs as daemon under Linux
 prototype web-based portal under development

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Implementation Specifics

 For building a database:
 disassembly currently using objdump (GNU binutils)

 but have used IDA Pro™, but with some limitations
 n.b., the programs must not be encrypted or packed

 10-perms used for our tests

 For querying:
 feature count vector extracted same way
 vector is sent to server, and results are read

 Interfaces:
 server components and command line tools
 JSP-based wrapper / interface

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Matching

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Comparing PE Information

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Comparing Strings

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Comparing Disassembly

a. Evaluation Design

Motivation   Search Methods   Evaluation
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Basic Performance Evaluation

 Query time is a critical performance issue
 must be able to query against large enough database
 should be interactive even when many samples involved

 Evaluation method:
load database with sample sets of different sizes
average times fo 200 randomly selected samples
measure time and memory usage

 query time only
 not transmission and parsing overheads

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Subject / Data Set

 Data was generated
 did not have access to thousands of authentic variants

 Group properties of the dataset are important
 query speed affected by sample sizes
 memory use is affected by

 number of families
 evolution rate between variants

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Data Set Construction /
Properties
 Projected from collection of authentic samples

 542 samples collected from mail server and web
 primarily worms and Trojans (Win32)

 Projection method
 size of created samples projected from authentic

distribution
 1 out of 2 are modified versions of another
 evolution rate between versions is half a % difference

 in practice, authentic variants are often much less different

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Results:  Memory & CPU Usage

b. Performance Evaluation

Motivation   Search Methods   Evaluation
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Accuracy Test Design

 Two error classes:
 false negative:  a good match was not reported
 false positive:  a match reported is not a good match
 “good” match:  known to be related or close in some way

 Evaluation method:
 load database with samples

 simulating typical menagerie of malice
 derivation relationships known between samples

 two query sessions using similarity threshold of .100 and
.002
 nothing returned less than these thresholds

 measures:
 precision and recall c. Accuracy Evaluation

Motivation   Search Methods   Evaluation
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Data Set Construction

 Data set is generated
 264 samples of Win32 malware selected from first

 all are from top-25 families in 2006, as named by Microsoft
[MSIR2006]

 36 of these identified as family constructed using
construction kit

 202 variants constructed using construction kit in forensic
environment
 known to be derivatives by construction
 related to the 36 collected from the wild

 466 samples total

c. Accuracy Evaluation

Motivation   Search Methods   Evaluation
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Results and Discussion

 Limited test due to limitations of database

 Optimum threshold for data set is at .100
 no point increasing threshold, since:

 no fewer false positives (precision is 100%)
 only fewer matches (recall drops)

 still a small number

1.001.00.100

1.000.79.002

Mean RecallMean PrecisionThreshold

c. Accuracy Evaluation

Motivation   Search Methods   Evaluation
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Conclusions

 Assembly-based vector matching is promising
 simple and automatic
 scalable to databases of 10s of thousands

 at least efficient for interactive matching, such as in triage
 designed to account for expected variation

 via selection of whole-program feature matching
 due to selection of feature types

 good preliminary results
 may be suitable for automated detection
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